java 8中的stream api使用指南-mile米乐体育
java 8引入了全新的stream api。这里的stream和i/o流不同,它更像具有iterable的集合类,但行为和集合类又有所不同。
stream api引入的目的在于弥补java函数式编程的缺陷。对于很多支持函数式编程的语言,map()、reduce()基本上都内置到语言的标准库中了,不过,java 8的stream api总体来讲仍然是非常完善和强大,足以用很少的代码完成许多复杂的功能。
创建一个stream有很多方法,最简单的方法是把一个collection变成stream。我们来看最基本的几个操作:
public static void main(string[] args) { listnumbers = arrays.aslist(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); stream stream = numbers.stream(); stream.filter((x) -> { return x % 2 == 0; }).map((x) -> { return x * x; }).foreach(system.out::println); }
集合类新增的stream()方法用于把一个集合变成stream,然后,通过filter()、map()等实现stream的变换。stream还有一个foreach()来完成每个元素的迭代。
为什么不在集合类实现这些操作,而是定义了全新的stream api?oracle官方给出了几个重要原因:
一是集合类持有的所有元素都是存储在内存中的,非常巨大的集合类会占用大量的内存,而stream的元素却是在访问的时候才被计算出来,这种“延迟计算”的特性有点类似clojure的lazy-seq,占用内存很少。
二是集合类的迭代逻辑是调用者负责,通常是for循环,而stream的迭代是隐含在对stream的各种操作中,例如map()。
要理解“延迟计算”,不妨创建一个无穷大小的stream。
如果要表示自然数集合,显然用集合类是不可能实现的,因为自然数有无穷多个。但是stream可以做到。
自然数集合的规则非常简单,每个元素都是前一个元素的值 1,因此,自然数发生器用代码实现如下:
class naturalsupplier implements supplier{ long value = 0; public long get() { this.value = this.value 1; return this.value; } }
反复调用get(),将得到一个无穷数列,利用这个supplier,可以创建一个无穷的stream:
public static void main(string[] args) { streamnatural = stream.generate(new naturalsupplier()); natural.map((x) -> { return x * x; }).limit(10).foreach(system.out::println); }
对这个stream做任何map()、filter()等操作都是完全可以的,这说明stream api对stream进行转换并生成一个新的stream并非实时计算,而是做了延迟计算。
当然,对这个无穷的stream不能直接调用foreach(),这样会无限打印下去。但是我们可以利用limit()变换,把这个无穷stream变换为有限的stream。
利用stream api,可以设计更加简单的数据接口。例如,生成斐波那契数列,完全可以用一个无穷流表示(受限java的long型大小,可以改为biginteger):
class fibonaccisupplier implements supplier{ long a = 0; long b = 1; @override public long get() { long x = a b; a = b; b = x; return a; } } public class fibonaccistream { public static void main(string[] args) { stream fibonacci = stream.generate(new fibonaccisupplier()); fibonacci.limit(10).foreach(system.out::println); } }
如果想取得数列的前10项,用limit(10),如果想取得数列的第20~30项,用:
listlist = fibonacci.skip(20).limit(10).collect(collectors.tolist());
最后通过collect()方法把stream变为list。该list存储的所有元素就已经是计算出的确定的元素了。
用stream表示fibonacci数列,其接口比任何其他接口定义都要来得简单灵活并且高效。
计算π可以利用π的展开式:
π/4 = 1 - 1/3 1/5 - 1/7 1/9 - ...
把π表示为一个无穷stream如下:
class pisupplier implements supplier{ double sum = 0.0; double current = 1.0; boolean sign = true; @override public double get() { sum = (sign ? 4 : -4) / this.current; this.current = this.current 2.0; this.sign = ! this.sign; return sum; } } stream pistream = stream.generate(new pisupplier()); pistream.skip(100).limit(10) .foreach(system.out::println);
这个级数从100项开始可以把π的值精确到3.13~3.15之间:
3.1514934010709914 3.1317889675734545 3.1513011626954057 3.131977491197821 3.1511162471786824 3.1321589012071183 3.150938243930123 3.132333592767332 3.1507667724908344 3.1325019323081857
利用欧拉变换对级数进行加速,可以利用下面的公式:
用代码实现就是把一个流变成另一个流:
class eulertransform implements function{ double n1 = 0.0; double n2 = 0.0; double n3 = 0.0; @override public double apply(double t) { n1 = n2; n2 = n3; n3 = t; if (n1 == 0.0) { return 0.0; } return calc(); } double calc() { double d = n3 - n2; return n3 - d * d / (n1 - 2 * n2 n3); } } stream pistream2 = stream.generate(new pisupplier()); pistream2.map(new eulertransform()) .limit(10) .foreach(system.out::println);
可以在10项之内把π的值计算到3.141~3.142之间:
0.0 0.0 3.166666666666667 3.1333333333333337 3.1452380952380956 3.13968253968254 3.1427128427128435 3.1408813408813416 3.142071817071818 3.1412548236077655
还可以多次应用这个加速器:
streampistream3 = stream.generate(new pisupplier()); pistream3.map(new eulertransform()) .map(new eulertransform()) .map(new eulertransform()) .map(new eulertransform()) .map(new eulertransform()) .limit(20) .foreach(system.out::println);
20项之内可以计算出极其精确的值:
... 3.14159265359053 3.1415926535894667 3.141592653589949 3.141592653589719
可见用stream api可以写出多么简洁的代码,用其他的模型也可以写出来,但是代码会非常复杂。
作者简介
廖雪峰,十年软件开发经验,业余产品经理,精通java/python/ruby/visual basic/objective c/lisp等编程语言,对开源框架有深入研究,著有《spring 2.0核心技术与最佳实践》一书,多个业余开源项目托管在github。