java内存模型深度解析:final-mile米乐体育

系列目录:

  • java内存模型深度解析:基础部分
  • java内存模型深度解析:重排序
  • java内存模型深度解析:顺序一致性
  • java内存模型深度解析:volatile
  • java内存模型深度解析:锁
  • java内存模型深度解析:final
  • java内存模型深度解析:总结

与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问。对于final域,编译器和处理器要遵守两个重排序规则:

  1. 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。

下面,我们通过一些示例性的代码来分别说明这两个规则:

public class finalexample {     int i;                            //普通变量     final int j;                      //final变量     static finalexample obj;      public void finalexample () {     //构造函数         i = 1;                        //写普通域         j = 2;                        //写final域     }      public static void writer () {    //写线程a执行         obj = new finalexample ();     }      public static void reader () {       //读线程b执行         finalexample object = obj;       //读对象引用         int a = object.i;                //读普通域         int b = object.j;                //读final域     } }

这里假设一个线程a执行writer ()方法,随后另一个线程b执行reader ()方法。下面我们通过这两个线程的交互来说明这两个规则。

写final域的重排序规则

写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面:

  • jmm禁止编译器把final域的写重排序到构造函数之外。
  • 编译器会在final域的写之后,构造函数return之前,插入一个storestore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。

现在让我们分析writer ()方法。writer ()方法只包含一行代码:finalexample = new finalexample ()。这行代码包含两个步骤:

  1. 构造一个finalexample类型的对象;
  2. 把这个对象的引用赋值给引用变量obj。

假设线程b读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程b错误的读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定”在了构造函数之内,读线程b正确的读取了final变量初始化之后的值。

写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程b“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值2还没有写入普通域i)。

读final域的重排序规则

读final域的重排序规则如下:

  • 在一个线程中,初次读对象引用与初次读该对象包含的final域,jmm禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final域操作的前面插入一个loadload屏障。

初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器。

reader()方法包含三个操作:

  1. 初次读引用变量obj;
  2. 初次读引用变量obj指向对象的普通域j。
  3. 初次读引用变量obj指向对象的final域i。

现在我们假设写线程a没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程a写入,这是一个错误的读取操作。而读final域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被a线程初始化过了,这是一个正确的读取操作。

读final域的重排序规则可以确保:在读一个对象的final域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的final域一定已经被a线程初始化过了。

如果final域是引用类型

上面我们看到的final域是基础数据类型,下面让我们看看如果final域是引用类型,将会有什么效果?

请看下列示例代码:

public class finalreferenceexample { final int[] intarray;                     //final是引用类型 static finalreferenceexample obj;  public finalreferenceexample () {        //构造函数     intarray = new int[1];              //1     intarray[0] = 1;                   //2 }  public static void writerone () {          //写线程a执行     obj = new finalreferenceexample ();  //3 }  public static void writertwo () {          //写线程b执行     obj.intarray[0] = 2;                 //4 }  public static void reader () {              //读线程c执行     if (obj != null) {                    //5         int temp1 = obj.intarray[0];       //6     } } }

这里final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:

  1. 在构造函数内对一个final引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,我们假设首先线程a执行writerone()方法,执行完后线程b执行writertwo()方法,执行完后线程c执行reader ()方法。下面是一种可能的线程执行时序:

在上图中,1是对final域的写入,2是对这个final域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。

jmm可以确保读线程c至少能看到写线程a在构造函数中对final引用对象的成员域的写入。即c至少能看到数组下标0的值为1。而写线程b对数组元素的写入,读线程c可能看的到,也可能看不到。jmm不保证线程b的写入对读线程c可见,因为写线程b和读线程c之间存在数据竞争,此时的执行结果不可预知。

如果想要确保读线程c看到写线程b对数组元素的写入,写线程b和读线程c之间需要使用同步原语(lock或volatile)来确保内存可见性。

为什么final引用不能从构造函数内“逸出”

前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面示例代码:

public class finalreferenceescapeexample { final int i; static finalreferenceescapeexample obj;  public finalreferenceescapeexample () {     i = 1;                              //1写final域     obj = this;                          //2 this引用在此“逸出” }  public static void writer() {     new finalreferenceescapeexample (); }  public static void reader {     if (obj != null) {                     //3         int temp = obj.i;                 //4     } } }

假设一个线程a执行writer()方法,另一个线程b执行reader()方法。这里的操作2使得对象还未完成构造前就为线程b可见。即使这里的操作2是构造函数的最后一步,且即使在程序中操作2排在操作1后面,执行read()方法的线程仍然可能无法看到final域被初始化后的值,因为这里的操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示:

从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

final语义在处理器中的实现

现在我们以x86处理器为例,说明final语义在处理器中的具体实现。

上面我们提到,写final域的重排序规则会要求译编器在final域的写之后,构造函数return之前,插入一个storestore障屏。读final域的重排序规则要求编译器在读final域的操作前面插入一个loadload屏障。

由于x86处理器不会对写-写操作做重排序,所以在x86处理器中,写final域需要的storestore障屏会被省略掉。同样,由于x86处理器不会对存在间接依赖关系的操作做重排序,所以在x86处理器中,读final域需要的loadload屏障也会被省略掉。也就是说在x86处理器中,final域的读/写不会插入任何内存屏障!

jsr-133为什么要增强final的语义

在旧的java内存模型中 ,最严重的一个缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整形final域的值为0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个final域的值时,却发现值变为了1(被某个线程初始化之后的值)。最常见的例子就是在旧的java内存模型中,string的值可能会改变(参考文献2中有一个具体的例子,感兴趣的读者可以自行参考,这里就不赘述了)。

为了修补这个漏洞,jsr-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为java程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保证任意线程都能看到这个final域在构造函数中被初始化之后的值。

展开全文
内容来源于互联网和用户投稿,文章中一旦含有米乐app官网登录的联系方式务必识别真假,本站仅做信息展示不承担任何相关责任,如有侵权或涉及法律问题请联系米乐app官网登录删除

最新文章

网站地图